Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 170: 116038, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141281

RESUMO

Cholangiocarcinomas (CCAs) are cancers originated in the biliary tree, which are characterized by their high mortality and marked chemoresistance, partly due to the activity of ATP-binding cassette (ABC) export pumps, whose inhibition has been proposed as a strategy for enhancing the response to chemotherapy. We have previously shown that ß-caryophyllene oxide (CRYO) acts as a chemosensitizer in hepatocellular carcinoma by inhibiting ABCB1, MRP1, and MRP2. Here, we have evaluated the usefulness of CRYO in inhibiting BCRP and improving the response of CCA to antitumor drugs. The TCGA-CHOL cohort (n = 36) was used for in silico analysis. BCRP expression (mRNA and protein) was assayed in samples from intrahepatic (iCCA) and extrahepatic (eCCA) tumors (n = 50) and CCA-derived cells (EGI-1 and TFK-1). In these cells, BCRP-dependent mitoxantrone transport was determined by flow cytometry. At non-toxic concentrations, CRYO inhibited BCRP function, which enhanced the cytostatic effect of drugs used in the treatment of CCA. The BCRP ability to confer resistance to a panel of antitumor drugs was determined in Chinese hamster ovary (CHO) cells with stable BCRP expression. At non-toxic concentrations, CRYO markedly reduced BCRP-induced resistance to known substrate drugs (mitoxantrone and SN-38) and cisplatin, gemcitabine, sorafenib, and 5-FU but not oxaliplatin. Neither CRYO nor cisplatin alone significantly affected the growth of BCRP-expressing tumors subcutaneously implanted in immunodeficient mice. In contrast, intratumor drug content was enhanced when administered together, and tumor growth was inhibited. In sum, the combined treatment of drugs exported by BCRP with CRYO can improve the response to chemotherapy in CCA patients.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Cricetinae , Humanos , Camundongos , Animais , Cisplatino/farmacologia , Mitoxantrona/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Células CHO , Resistencia a Medicamentos Antineoplásicos , Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias/metabolismo , Cricetulus , Antineoplásicos/farmacologia , Colangiocarcinoma/tratamento farmacológico , Linhagem Celular Tumoral
2.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445895

RESUMO

Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of disorders ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Hepatic steatosis may result from the dysfunction of multiple pathways and thus multiple molecular triggers involved in the disease have been described. The development of NASH entails the activation of inflammatory and fibrotic processes. Furthermore, NAFLD is also strongly associated with several extra-hepatic comorbidities, i.e., metabolic syndrome, type 2 diabetes mellitus, obesity, hypertension, cardiovascular disease and chronic kidney disease. Due to the heterogeneity of NAFLD presentations and the multifactorial etiology of the disease, clinical trials for NAFLD treatment are testing a wide range of interventions and drugs, with little success. Here, we propose a narrative review of the different phenotypic characteristics of NAFLD patients, whose disease may be triggered by different agents and driven along different pathophysiological pathways. Thus, correct phenotyping of NAFLD patients and personalized treatment is an innovative therapeutic approach that may lead to better therapeutic outcomes.


Assuntos
Diabetes Mellitus Tipo 2 , Síndrome Metabólica , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/complicações , Diabetes Mellitus Tipo 2/complicações , Síndrome Metabólica/complicações , Comorbidade
3.
Cancers (Basel) ; 12(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32933095

RESUMO

The unsatisfactory response of colorectal cancer (CRC) to pharmacological treatment contributes to the substantial global health burden caused by this disease. Over the last few decades, CRC has become the cause of more than 800,000 deaths per year. The reason is a combination of two factors: (i) the late cancer detection, which is being partially solved by the implementation of mass screening of adults over age 50, permitting earlier diagnosis and treatment; (ii) the inadequate response of advanced unresectable tumors (i.e., stages III and IV) to pharmacological therapy. The latter is due to the existence of complex mechanisms of chemoresistance (MOCs) that interact and synergize with each other, rendering CRC cells strongly refractory to the available pharmacological regimens based on conventional chemotherapy, such as pyrimidine analogs (5-fluorouracil, capecitabine, trifluridine, and tipiracil), oxaliplatin, and irinotecan, as well as drugs targeted toward tyrosine kinase receptors (regorafenib, aflibercept, bevacizumab, cetuximab, panitumumab, and ramucirumab), and, more recently, immune checkpoint inhibitors (nivolumab, ipilimumab, and pembrolizumab). In the present review, we have inventoried the genes involved in the lack of CRC response to pharmacological treatment, classifying them into seven groups (from MOC-1 to MOC-7) according to functional criteria to identify cancer cell weaknesses. This classification will be useful to pave the way for developing sensitizing tools consisting of (i) new agents to be co-administered with the active drug; (ii) pharmacological approaches, such as drug encapsulation (e.g., into labeled liposomes or exosomes); (iii) gene therapy interventions aimed at restoring the impaired function of some proteins (e.g., uptake transporters and tumor suppressors) or abolishing that of others (such as export pumps and oncogenes).

4.
Cancers (Basel) ; 12(8)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751679

RESUMO

Gastric adenocarcinoma (GAC) is the most common histological type of gastric cancer, the fifth according to the frequency and the third among the deadliest cancers. GAC high mortality is due to a combination of factors, such as silent evolution, late clinical presentation, underlying genetic heterogeneity, and effective mechanisms of chemoresistance (MOCs) that make the available antitumor drugs scarcely useful. MOCs include reduced drug uptake (MOC-1a), enhanced drug efflux (MOC-1b), low proportion of active agents in tumor cells due to impaired pro-drug activation or active drug inactivation (MOC-2), changes in molecular targets sensitive to anticancer drugs (MOC-3), enhanced ability of cancer cells to repair drug-induced DNA damage (MOC-4), decreased function of pro-apoptotic factors versus up-regulation of anti-apoptotic genes (MOC-5), changes in tumor cell microenvironment altering the response to anticancer agents (MOC-6), and phenotypic transformations, including epithelial-mesenchymal transition (EMT) and the appearance of stemness characteristics (MOC-7). This review summarizes updated information regarding the molecular bases accounting for these mechanisms and their impact on the lack of clinical response to the pharmacological treatment currently used in GAC. This knowledge is required to identify novel biomarkers to predict treatment failure and druggable targets, and to develop sensitizing strategies to overcome drug refractoriness in GAC.

5.
Cells ; 9(2)2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098199

RESUMO

The dismal prognosis of patients with advanced cholangiocarcinoma (CCA) is due, in part, to the extreme resistance of this type of liver cancer to available chemotherapeutic agents. Among the complex mechanisms accounting for CCA chemoresistance are those involving the impairment of drug uptake, which mainly occurs through transporters of the superfamily of solute carrier (SLC) proteins, and the active export of drugs from cancer cells, mainly through members of families B, C and G of ATP-binding cassette (ABC) proteins. Both mechanisms result in decreased amounts of active drugs able to reach their intracellular targets. Therefore, the "cancer transportome", defined as the set of transporters expressed at a given moment in the tumor, is an essential element for defining the multidrug resistance (MDR) phenotype of cancer cells. For this reason, during the last two decades, plasma membrane transporters have been envisaged as targets for the development of strategies aimed at sensitizing cancer cells to chemotherapy, either by increasing the uptake or reducing the export of antitumor agents by modulating the expression/function of SLC and ABC proteins, respectively. Moreover, since some elements of the transportome are differentially expressed in CCA, their usefulness as biomarkers with diagnostic and prognostic purposes in CCA patients has been evaluated.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/uso terapêutico , Membrana Celular/metabolismo , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/metabolismo , Terapia de Alvo Molecular/métodos , Proteínas Carreadoras de Solutos/metabolismo , Transportadores de Cassetes de Ligação de ATP/agonistas , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/metabolismo , Biomarcadores/metabolismo , Colangiocarcinoma/diagnóstico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Transporte Proteico , Proteínas Carreadoras de Solutos/agonistas , Proteínas Carreadoras de Solutos/antagonistas & inibidores
6.
Hepatology ; 69(4): 1632-1647, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30411380

RESUMO

Intrahepatic accumulation of bile acids (BAs) causes hepatocellular injury. Upon liver damage, a potent protective response is mounted to restore the organ's function. Epidermal growth factor receptor (EGFR) signaling is essential for regeneration after most types of liver damage, including cholestatic injury. However, EGFR can be activated by a family of growth factors induced during liver injury and regeneration. We evaluated the role of the EGFR ligand, amphiregulin (AREG), during cholestatic liver injury and regulation of AREG expression by BAs. First, we demonstrated increased AREG levels in livers from patients with primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). In two murine models of cholestatic liver injury, bile duct ligation (BDL) and alpha-naphthyl-isothiocyanate (ANIT) gavage, hepatic AREG expression was markedly up-regulated. Importantly, Areg-/- mice showed aggravated liver injury after BDL and ANIT administration compared to Areg+/+ mice. Recombinant AREG protected from ANIT and BDL-induced liver injury and reduced BA-triggered apoptosis in liver cells. Oral BA administration induced ileal and hepatic Areg expression, and, interestingly, cholestyramine feeding reduced postprandial Areg up-regulation in both tissues. Most interestingly, Areg-/- mice displayed high hepatic cholesterol 7 α-hydroxylase (CYP7A1) expression, reduced serum cholesterol, and high BA levels. Postprandial repression of Cyp7a1 was impaired in Areg-/- mice, and recombinant AREG down-regulated Cyp7a1 mRNA in hepatocytes. On the other hand, BAs promoted AREG gene expression and protein shedding in hepatocytes. This effect was mediated through the farnesoid X receptor (FXR), as demonstrated in Fxr-/- mice, and involved EGFR transactivation. Finally, we show that hepatic EGFR expression is indirectly induced by BA-FXR through activation of suppressor of cytokine signaling-3 (SOC3). Conclusion: AREG-EGFR signaling protects from cholestatic injury and participates in the physiological regulation of BA synthesis.


Assuntos
Anfirregulina/metabolismo , Ácidos e Sais Biliares/biossíntese , Colestase Intra-Hepática/metabolismo , Colesterol 7-alfa-Hidroxilase/metabolismo , Animais , Receptores ErbB/metabolismo , Humanos , Camundongos Endogâmicos C57BL
7.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt B): 2927-2937, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29883717

RESUMO

At high doses, glucocorticoids (GC) have been associated with enhanced serum bile acids and liver injury. We have evaluated the effect of GC, in the absence of hepatotoxicity, on FXR/FGF91(Fgf15)/FGF21-mediated ileum-liver crosstalk. Rats and mice (wild type and Fxr-/-, Fgf15-/- and int-Gr-/- strains; the latter with GC receptor (Gr) knockout selective for intestinal epithelial cells), were treated (i.p.) with dexamethasone, prednisolone or budesonide. In both species, high doses of GC caused hepatotoxicity. At a non-hepatotoxic dose, GC induced ileal Fgf15 down-regulation and liver Fgf21 up-regulation, without affecting Fxr expression. Fgf21 mRNA levels correlated with those of several genes involved in glucose and bile acid metabolism. Surprisingly, liver Cyp7a1 was not up-regulated. The expression of factors involved in transcriptional modulation by Fxr and Gr (p300, Drip205, CBP and Smrt) was not affected. Pxr target genes Cyp3a11 and Mrp2 were not up-regulated in liver or intestine. In contrast, the expression of some Pparα target genes in liver (Fgf21, Cyp4a14 and Vanin-1) and intestine (Vanin-1 and Cyp3a11) was altered. In mice with experimental colitis, liver Fgf21 was up-regulated (4.4-fold). HepG2 cells transfection with FGF21 inhibited CYP7A1 promoter (prCYP7A1-Luc2). This was mimicked by pure human FGF21 protein or culture in medium previously conditioned by cells over-expressing FGF21. This response was not abolished by deletion of a putative response element for phosphorylated FGF21 effectors present in prCYP7A1. In conclusion, GC interfere with FXR/FGF19-mediated intestinal control of CYP7A1 expression by the liver and stimulate hepatic secretion of FGF21, which inhibits CYP7A1 promoter through an autocrine mechanism.


Assuntos
Comunicação Autócrina/efeitos dos fármacos , Glucocorticoides/farmacologia , Íleo/metabolismo , Fígado/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Ácidos e Sais Biliares/biossíntese , Colesterol/metabolismo , Colesterol 7-alfa-Hidroxilase/metabolismo , Colite/induzido quimicamente , Colite/patologia , Modelos Animais de Doenças , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Células Hep G2 , Humanos , Íleo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Wistar , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...